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I. INTRODUCTION 

There is general agreement that the two most important factors determining electron transfer rates 

in solution are the degree of electronic interaction between the donor and acceptor sites, and the 

changes in the nuclear configurations of the donor, acceptor, and surrounding medium that occur 

upon the gain or loss of an electron Ll-51. The electronic interaction of the sites will be very 

weak, and the electron transfer slow, when the sites are far apart or their interaction is symmetry 

or spin forbidden. Since electron motion is much faster than nuclear motion, energy conservation 

requires that, prior to the actual electron transfer, the nuclear configurations of the reactants and 

the surrounding medium adjust from their equilibrium values to a configuration (generally) 

intermediate between that of the reactants and products. In the case of electron transfer between 

, two metal complexes in a polar solvent, the nuclear configuration changes involve adjustments in 

the metal-ligand and intraligand bond lengths and angles, and changes in the orientations of the 

surrounding solvent molecules. In common with ordinary chemical reactions, an electron transfer 

reaction can then be described in terms of the motion of the system on an energy surface from the 

reactant equilibrium configuration (initial state) to the product equilibrium configuration (final 

state) via the activated complex (transition state) configuration. 

This chapter will focus on the predictions of the traditional two-state electron transfer 

model. Only the ground and lowest excited state of the system are considered and contributions 

from higher electronic states are ignored. Thermal and optical electron transfers in both weakly 

and strongly interacting systems are discussed. The treatment is not intended to be exhaustive 

but instead will focus on certain features of the model that may be less familiar but which 

nevertheless have important implications. 

II. ZERO-ORDER ENERGY SURFACES 

Provided a hypothetical change in the charge on the reactants produces a proportional change in 

the dielectric polarization of the surrounding medium, the distortions of the reactants and 

products from their equilibrium configurations can be described in terms of diplacements on 

harmonic free-energy curves with identical force constants [Is51. This is illustrated in Figures 1 

and 2 where the free energy of the close-contact reactants plus surrounding medium (Curve Ga) 

and the free energy of the close-contact products plus surrounding medium (Curve Gb) are 

plotted vs. the reaction coordinate for a self-exchange reaction. The free-energy curves depict the 

zero-order or diabatic states of the system. Figure 1 shows the diabatic free-energy curves for a 

self-exchange reaction (Eq. (2.1 a), AGO = 0) and Figure 2 the curves for an electron transfer 

reaction accompanied by a net chemical change (Eq. (2.1 b), AGO < 0 for an exergonic reaction). 
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Fe(H20)b2+ + Fe(H20)b3+ = Fe(H20)63+ f Fe(&0)62+ (2. la) 

Fe(H20)b2+ + Ru(bpy)33+ = Fe(H20)b3+ + Ru(bpy)J’+ (2Sb) 

The curves have identical force constantsfand their minima are separated by a,, ‘The vertical 

difference between the free energies of the reactants and products of a self-exchange reaction at 

the reactants’ (or products’) minimum (equilibrium configuration) is the reorganization parameter 

h = j&,2/2. Denoting the displacement along the reaction coordinate by X, a dimensionless 

reaction coordinate X may be defined as x/a,. Xvaries from 0 to 1 as the reaction proceeds and, 

with X as the coordinate, the force constants of the parabolas are equal to 2h. 

f Gb = T’x- a,)’ + AC? = a(X- 1)2 + AG” 

(2.2a) 

(2.2b) 

The sum and difference of the zero-order free energies are given by 

(Gb + Ga) = 2h(X - 1,/2)2 + l/2 + AGO (2.3a) 

(Gb - Ga) = h(1 - 2X) + AGO (2.3b) 

and the free-energy curves defined by these equations are included in Figures 1 and 2. The sum 

of the free energies of the reactants and products is a parabola[:6] with force constant 4h centered 

at X= l/2 with its minimum vertically displaced relative to the reactant minimum by h/2 + AGO. 

Similarly, the dependence of the average diabatic energy (& $_ Ga)/2 on Xalso is harmonic but 

with force constant 2h, identical to that of the separated reactants and product curves. The 

parabola defined by the average energies is still centered at X == l/2 but with its minimum 

vertically displaced relative to the reactant minimum by h/4 + AGo/2. Since the difference 

between the diabatic free-energies of the reactants and products (Gb - Ga) is linearly related to X, 

this difference affords a measure of the progress of the reaction L7~ 81 and, as a consequence, it 

provides an alternate definition of the reaction coordinate. For both self-exchange reactions and 

reactions accompanied by a net chemical change, the slope of (Gb - Ga) vs. Xis equal to -2h. 

The free energy of activation for the electron transfer is the difference between the free 

energies of the transition-state configuration and the equilibrium configuration of the reactants. 

AG” = G$+ - Ga,eq (2.4) 
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The equilibrium configuration of the reactants in the zero-interaction limit is located at ,Y= 0 with 

G a,eq = 0. At the transition state, Ga * = Gt,* so that P and the free energy of activation in the 

zero-interaction limit are given by Eqs. (2.5a) and (2.5b), respectively. 

AG” 
AG” ’ 

=n(J+)‘=q l+- 
i j A 

(2.5b) 

(2.5a) 

Evidently AG” = h/4 for AGo = 0. Three free-energy regimes can be distinguished depending on 

the relative magnitudes of h and AGO. When -AGo < h the reaction is in the normal regime where 

AG” decreases, and the rate constant increases, with increasing driving force. The reaction 

becomes barrierless (AG” = 0) when -AGo = h and AG* is then insensitive to changes in AGO. If 

the driving force is increased even further then -AGo > h and AG” increases, and the rate constant 

decreases, with increasing driving force. This is the counter-intuitive inverted regime. 

By using the Gibbs-Helmholtz equations, it follows from Eq. (2.5b) that the activation 

enthalpy and entropy are given by: 

AQ hql-[L!q]+$[l+L.gj 
4 

(2.6a) 

As’=- AS, 
4 

[l-[~]]+!!$+J!-$lj (2.6b) 

where MA = a(n/q/a(l/r) and ASA = - a(n,)/a( ) T ~1 . Equation (2.5b) for the free energy of 

activation can be rewritten as 

(2.6~) 

which is the same form as the activation enthalpy and entropy expressions. 

The above equations give the activation parameters derived for the classical model. 

Departures are expected, and observed, for nonparabolic surfaces that are very weakly coupled 

and/or when the experimental activation parameters contain contributions from other sources 

WI. 

III. SEMICLASSICAL TREATMENT 

4 



Electronic interaction of the reactants gives rise to the first-order energy surfaces shown as Cl 

and G2 in Figure 3. The splitting at the intersection of the zero-order energy surfaces in Figure 3 

is equal t0 2/&b, where H& iS the &CtrOniC matrix element. YVe Will treat f&b as a pOSitiVe 

quantity. 

A. First-Order Energy Surf&es 

If W, and &, denote the wave functions of the zero-order initial (reactant) and final 

(product) states, their interaction gives rise to two linear combinations, the first-order or adiabatic 

states 

wl = Cay, + Cbvb (2.6a) 

(2.6b) 

where Wl is the wave function for the lower (ground) and W2 is the wave function for the upper 

(excited) adiabatic state (energies Gl and G2, respectively) when the overlap integral Sat, is 

neglected (or is zero by construction [ 1 111, and the mixing coefficients are normalized, i.e., 

c82 + c$ = 1. The energies of the adiabatic states are obtained by solving the two-state secular 

determinant 

G, -G Hab 
=o 

HalI Gb -. G 
(2-V 

where, as before, Ga = Haa = <W, 1 HI Va> and Gb = Hbb = <v/b 1 HI Vb> are the energies of the 

diabatic states. His the total Hamiltonian operator of the system including the interaction terms. 

The roots of the determinant are 

q=; 
1 

(q)+G,)-[(G,-c,)i+4h$ I’* 
II 

c’=; (c,+c,)+[(c,-Kq+4Hg2 
i -1 

(2.8a) 

(2.8b) 

The difference between the adiabatic energies is given by Eq. (2.9) while their sum is given by Eq. 

(2.10). 

(2.9a) 



(2.9b) 

(2.1 Oa) 

+2X-1)2 +l]+Ad’ 
(2.10b) 

Evidently the average adiabatic energy (G2 + Gt)/2, like the average diabatic energy, is described 

by a parabola with force constant 2A centered at X = l/2 with its minimum vertically displaced by 

U4 + AGO/2 relative to the diabatic minimum. 

The product of the adiabatic energies is given by Eq. (2.11 a), the product of the mixing 

coefficients is given by Eq. (2.11 b), and (1 - 2cb2) is given by Eq. (2.11 c) [ 1 ‘1. 

GI G2 = GaGb - Hab2 (2.1 la) 

cacb = Hab/(G - G1) (2.1 lb) 

The dependence of cb2 on the reaction coordinate is given by 

(2.1 lc) 

(1-2x) 

ir 
(l-2x)+A@/d]2 +4@&* 

(2.12) 

The squares of ca and cb are the fraction of the charge of the transferring electron that is on the 

donor and acceptor, respectively, at any given nuclear configuration. Thus cb2 also provides a 

measure of the progress of the electron transfer. However, unlike X, which is a nuclear 

con$guration coordinate, cb2 is an electronic con$guration coordinate. Figure 6 shows plots of 

Cb2 vs X for various values of Hat&. As is evident from Eq. (2.12) and Figure 6, the two 

coordinates are not linearly related except at very large Hab. In the very weak interaction limit 

(diabatic curves, Hab = 0) no electron density is transferred until X= 0.5 when the electron 

“suddenly” jumps from the donor to the acceptor. In this case cb2 is not a continuous function of 

X instead Cb2 =0 for all x < l/2 and Cb 2 = 1 for X> l/2. As Hab increases, charge density is 

transferred more gradually (with more delocalization present in the initial reactant configuration) 

and cb2 approaches linearity in X when Hab 2 h. 
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1. Symntetrical System 

ks shown in Figure 3, the splitting at the intersection of the diabatic energy curves lowers the 

barrier by H&. Further, as H& increases, the reactant and product minima of the adiabatic curves 

move closer together. The positions of the minima (reactant’s and product’s equilibrium 

configurations) are given by 

(2.13a) 

(2.13b) 

and their energies are lowered by H,&hrelative to the diabatic minima [41* I n view of these 

changes the free energy of activation for a self-exchange reaction with appreciable coupling of the 

reactants is given by 

AG* = h/4 - &, +&b2/h (2.14a) 

2f%b = =p l-- ( 1 a 
(2.14b) 

The second and third terms on the RHS of Eq. (2.14a) are due to the lowering of the barrier and 

the stabilization of the reactants, respectively [41. 

Three classes of symmetrical systems may be distinquished depending on the magnitude 

of the electronic coupling of the donor and acceptor sites L1 2- 141. In Class I systems the 

coupling is very weak (Figure 1) and the properties of Class I systems are essentially those of 

the separate reactants (i.e., the adiabatic energy curves are very close to the diabatic curves). 

Activated electron transfer either does not occur at all or it occurs only very slowly (because of 

its high nonadiabaticity) with AC* = h/4 and optical electron transfer can not occur Class II 

systems (0 < H,b< ?J2, Figure 3) possess new optical and electronic properties in addition to 

those of the separate reactants. They remain valence trapped or charge localized: the electron 

transfers range from nonadiabatic (&b < 10 cm-l) to strongly adiabatic (Hat, > 200 cm-l) with 

AG* given by Eq. (2.14). Equations (2.13) and (2.14) hold as long as the self-exchange reaction is 

described by a double well potential, i.e., as long as the system remains valence trapped. In Class 
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III systems the interaction of the donor and acceptor sites has become so large that two separate 

minima are no longer discernible and the lower energy surface features a single well at S= l/2 

(Figure 4). This is the delocalized case which occurs when Hat, 2 h/2. The latter condition 

follows readily from the zero barrier limit (AG” = 0) of Eq. (2.14). 

From Eq. (2.3b) the vertical difference between the diabatic energies at the equilibrium 

configuration (adiabatic minimum) of the reactants is given by 

6% - Ga)eq = h( 1 - 2x&J 

II2 

(2.15a) 

(2.15b) 

It therefore follows from Eq. (2.9a) that the vertical difference between the adiabatic energies at 

the reactants’ equilibrium configuration is given by 

(G2-G),, = h (2.16) 

This result is independent of Hab for &b I h/2. In other words, the vertical difference between 

the free energies of the reactants and products of a symmetrical reaction remains equal to h at the 

equilibrium configuration of the reactants (or products) regardless of the magnitude of the 

electronic coupling as long as the system remains valence trapped L1 11. Although the repulsion 

of the reactant and product curves increases with increasing &b, this is compensated for by the 

reactant and product minima moving closer together [ 1 51. The net effect is that the adiabatic 

energy difference at Xmh remains equal to h. 

It follows from Eqs. (2.11 c) and (2.16) that, for H& I h/2, (cb2)eq is given by 

(2.17) 

Comparison with Eq. (2.13a) shows that, for a symmetrical system with HaI, > 0, (Cb2)eq = 

x min,a. For Nab/h = 0.3 this corresponds to Xmin,a = 0.10. Moreover, at the transition state for 

a Symmetrical SyStem Cb 2 =A’* = l/2. The equilibrium and transition-state configurations are the 

only configurations at which X and cb2 for a symmetrical system are equal. 

Values of (G2 - GI)/h calculated from Eq. (2.9b) are plotted vs Xfor various Ha& values 

in Figure 5. The adiabatic energy difference flattens with increasing Hab and becomes essentially 

independent of X when Hab 2 2h. Under these conditions the system is deeply into the Class III 
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regime. Further, it is evident from Eq. (2.8) that, except for extreme values ofX, the force 

constants of the vertically aligned adiahafic surfaces in very strongly coupled symmetrical 

systems (Hat, > 2h) are equal to that of the original diabatic parabolas (cf discussion of Eq. 

(2.10)). Figure 6 shows that for typical symmetrical Class II rsystems most of the charge density 

is transferred between X= 0.4 - 0.6. 

2. Unsymmetrical Systems 

As in the case of symmetrical systems, the properties of an unsymmetrical Class I system are 

essentially those of the separate reactants. Although Class II ,systems are valence trapped, 

sufficiently endergonic reactions can exhibit a single minimum close to the noninteracting reactant 

minimum. This minimum shifts to X* = 0.5 only when i&b becomes very large. Provided that 

l&b < (h + AGO)/2 and /AGoI < h, the positions of the reactant and product minima are given by 

Eqs. (2.18a) and (2.18b), while the location of the transition state is given by Eq. (2.18~). 

Hfb /A2 
Xmin,a = (1 + AGo/a)2 

Ha2b /a* A&b = ’ - (1-_ ~G”/a)2 

(2.18a) 

(2.18b) 

x* = (1 + AG”/a - 2Hab/k) 

2(1-- 2kcib/a) 
(2.18~) 

The free energy of activation is given by 

A(-$’ = ;t+ AGo + @a”>’ _ H;~ .+ Hab2 
4 2 4(a - 2Hab) (il+ AGO) 

(2.19) 

In the above equations -AGO is the driving force in the noninteracting (&b = 0) system i1 51. 

B. Rate Constant Expressions 

The first-order rate constant for intramolecular electron transfer or for electron transfer within the 

precursor complex formed from the reactants in a bimolecular ,reaction is given by 
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kel = Ql V,exp(-AG*lRT) (3.1) 

where &l is the electronic transmission coefficient, V, is the nuclear vibration frequency that takes 

the system through the intersection region and AG” is the free energy of activation for the 

electron transfer 141. 

The electronic transmission coefficient is the probability that electron transfer will occur 

once the system has reached the intersection region (transition state). Provided that the 

electronic interaction of the reactants is sufficiently strong ~1 = 1 and the electron transfer will 

occur with near unit probability in the intersection region: the electron transfer reaction is 

adiabatic with the system remaining on the lower energy surface on passing through the 

intersection region. Under these conditions kel is given by 

kl = V,exp(-A@lRT) (3.2) 

On the other hand, for a nonadiabatic reaction, K,l << 1, K,l V, = V,l and the rate constant is 

given by Eq. (3.3) where V,l is the electron hopping frequency in the activated complex. The 

Landau-Zener treatment yields Eq. (3.4) for V,l [16, 1 71. 

&=J = Velexp(-AG”lR7) (3.3) 

(3.4) 

In effect, the adiabatic and nonadiabatic limits of the transition state formalism correspond to V,l 

>> V, and V,l << V,, respectively. 

The frequency of electron hopping in the activated complex may be estimated from 

2/&b/h, the oscillating frequency of the two degenerate diabatic states [lb]. Evidently V,l - 1013 

s-1 for interaction energies of only a few hundred cals. A similar estimate is obtained from the 

Landau-Zener treatment of the intersection region [161. Since the system typically spends about 

lo-13 s in the intersection region (i.e., V, -1013 s-l), the electron transfer will generally be 

adiabatic for interaction energies larger than about 100 - 300 cal(30 - 100 cm-l). 

C. Reorganization Parameters 
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The reorganization parameter is usually broken down into inner-shell (vibrational) and 

outer-shell (solvational) components. 

h = hi, + Aout (3.5) 

The inner-shell reorganization energy is generally treated within an harmonic approximation 

The outer-shell reorganization energy depends upon the properties of the solvent. When a 

continuum model for the solvent is used bout is a function of l;he dielectric properties of the 

WI. 

medium, the distance separating the donor and acceptor sites, and the shape of the reactants. 

I. Inner-Shell Reorganization Energy 

In order to illustrate the approach used to calculate the inner-shell comtribution to the 

reorganization barrier we consider the symmetrical stretching vibrations of the two reactants in 

the Fe(HzO)$+ - Fe(HzO)$+ self-exchange reaction (Eq. (2.1 a)). The inner-shell reorganization 

term is the sum of the reorganization parameters of the individual reactants, i.e., 

hi, = h2(d20 + d3’) + h3(dJ” + 1120) (3.6a) 

The first term on the RI-IS is the energy required to change the Fe-O distance in Fe(HzO)$+ from 

its equilibrium value d20 to the equilibrium value d30 in Fe(H;lO)$+ and the second term is the 

energy required to change the Fe-O distance in Fe(HzO)$+ from d30 to d20. Denoting (d20 - 

d30) by Ado, the vertical reorganization energy is given by Eqs. (3.6b) and (3.6~) wheref2 andjj 

are the respective breathing force constants. 

(3.6b) 

(3.6~) 

Evidently the contributions of the Fe(H20)f;2+ and Fe(H20)63+ breathing modes to hi, are 

directly proportional to their respective force constants. 

In the activation process, the energy required to reach the transition state configuration is 

given by 

A6, =3J;(4-4)2+31;(4-4)2 

11 
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Energy conservation requires that the Fe-O distances in the Fe(H~0)6~’ and Fe(H20)63+ adjust 

to a common value d* prior to the electron transfer. 

d2* = d3* = d* (3.7b) 

Minimizing the resulting reorganization energy expression yields Eq. (3.7~) and substitution into 

Eq. (3.7a) gives Eq. (3.7d). 

(3.7c) 

(3.7d) 

(3.7e) 

(3.7f) 

The ratio of the amounts that the Fe(HzO)$+ and Fe(HzO)$+ ions reorganize is equal to f3/f2 

i.e., inversely proportional to their force constants. Sincef3 is larger thanf2, the Fe(H20)$+ ion 

reorganizes more than the Fe(H20)63+ ion. Note also that AG. rn* < kin/4 because the free-energy 

surfaces are not harmonic along the reaction coordinate [151. 

Considerable simplification results from using a common, reduced valueh,, for the force 

constant of the Fe(H20)b2+ and Fe(HzO)$+ symmetrical stretching vibrations. 

Under these conditions 

(3.8) 

(3.9a) 

(3.9b) 

(3.9c) 
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and the two symmetrized reactants reorganize to the same extent with AGin* now equal to hi,/4. 

The relationship between the vertical reorganization pa:rameter and the activation energy 

and the effect of using differ criteria for the inner-shell reorganization have recently been 

considered in some detail L1 51. The reorganization energy and the contributions of the individual 

reactants turn out to be quite sensitive to the model used. 

2. Solvent Reorganization Energy 

Because of Coulomb interaction terms the solvent reorganization energy is not as readily broken 

down into contributions from the separate reactants. We illustrate the approach used to calculate 

the solvent reorganization energy by using the zero-electronic- interaction, two-sphere model 

developed by Marcus [ 1 9 1 9~ 201. 

The familiar Born expression for the free energy of equilibrium solvation of a charged 

sphere is 

(3.10) 

where qe is the charge on the ion, a is its radius and DS is the static dielectric constant of the 

medium. The equilibrium solvation energy ccan be resolved into two contributions 

(3.11) 

where the first contribution is the equilibriuni salvation due to the electronic polarization of the 

medium and the second is the contribution from its orientational-vibrational polarization. DO, is 

the optical dielectric constant of the medium. Note that the orientational-vibrational polarization 

term contains the Pekar factor (1 /DO, - l/D,). The electronic polarization is assumed to be rapid 

and capable of keeping up with the transferring electron. The orientational-vibrational 

polarization is much slower and lags behind. Energy conservation requires that the orientation- 

vibrational polarization adjust to a nonequilibrium value prior to the electron transfer. 

Marcus devised a two-step path for calculating the reversible work required to establish a 

nonequilibrium orientational-vibrational polarization of the medium. In the first step the 

orientational-vibrational and electronic polarization of the medium is changed from being in 
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equilibrium with the initial charges qz” and 430 to being in equilibrium with the (hypothetical) 

charges q2* and qj*. In the second step the orientational-vibrational polarization remains 

appropriate to q2* and qj* but the electronic polarization is changed back to being in equilibrium 

with 420 and q3 0. The energy required to reorganize the solvent to the nonequilibrium 

configuration appropriate to charges q2* and q3* is then the sum of the work done in these two 

paths. 

A&, = k --- (3.12) 

The reactants are treated as rigid spheres and their radii are not allowed to change during the 

reorganization process: the radii in Eq. (3.12) are the average radii defined by l/a = (l/a2 + 

lla3)/2 and r is the distance between the centers of the spheres. Note that the numerators in Eq. 

(3.12) contain the square of the difference of the charges (or, in the case of the electrostatic 

interaction term, the product of charge differences) and are not simply differences between the 

squares of charges, as might have been expected on the basis of the Born equation. 

Analogous to the case of the inner-shell reorganization, energy conservation requires that 

the transition-state charges for the solvent ieorganization be equal. 

q2* = q3* = q* (3.13a) 

Minimizing the resulting solvent reorganization expression yields 

4 * = (420 + q30)/2 (3.13b) 

and substitution into Eq. (3.12) yields Eq. (3.14a) for the free energy of activation 

(3.14a) 

where it has been assumed that the zero-interaction donor and acceptor sites differ by a single 

electron, i.e., (q3O - q2O) = 1. Similarly, substitution into Eq. (3.12) of q2* = 430 and q3* = 420 

yields Eq. (3.14b) for the solvent reorganization energy in a vertical one-electron transition with 

h out = 4AGOut*, 
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(3.14b) 

If there is appreciable delocalization in the initial (equilibrium) state then less than a unit of 

charge will be transferred from the donor to the acceptor. In terms of the mixing coefficients the 

zero-interaction charge difference (qz” - qJ”) needs to be scaled by (ca2 - cb2)eq =: (1 - 2Cb2)eq 

to obtain the “real” charge transferred. We thus obtain 

Aq = (Ca2 - Cb2)eq = (1 - kb2)eq (3.15) 

At the minimum of the adiabatic curve, i.e., at the equilibrium configuration of the reactants, 

(cb2)eq is given by Eq. (2.17) so that 

(3.16) 

Electron delocalization in the initial state thus scales the solvent activation barrier by (1 - 

4H,b2/h2). 

The vertical reorganization parameter h is a property of the diabatic states, (Hal, = 0) and 

hour continues to be given by Eq. (3.14b) regardless of the degree of initial state delocalization. 

When appreciable delocalization is present we add a prime to indicate that h has been modified to 

allow for the reduction in the charge transferred [ 15, 211. In other words, h’ denotes a 

reorganization energy that has been scaled by (1 - 4Hab2/k2). (The parameter h’ used here and in 

[ 1 51 corresponds to hmod introduced earlier c2 1 I.> 

(3.17a) 

Similar considerations apply to the inner-shell reorganization. When initial-state delocalization is 

present (d20 - d30) is scaled by (1 - 2Cb2)eq giving 

(3.17b) 

Consequently 
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(3.17c) 

In a sense the primed (scaled) quantities are the “actual” vertical reorganization energies since 

their values are determined by the actual charge transferred. While it would be convenient if h’ 

was the seperation between the diabatic energy curves at the reactant’s equilibrium configuration 

(Xmin), it is not. The diabatic curves (H,b =O) correspond to a charge transfer of one electron 

with this charge abruptly transferring at the transition state: delocalization is not incorporated 

into the diabatic surfaces. This topic is discussed further under optical charge transfer in Section 

IIID. 

3. Time Scales for Solvent Electronic Polarization and Electron Transfer 

The above treatment is based upon the traditional Born-Oppenheimer approximation which 

states that, when nuclei move, the electrons can almost instantaneously adjust to their new 

positions. Another relevant time frame is the time required to establish the electronic 

polarization of the medium. In order to characterize this time frame Kim and Hynes consider the 

ratio of V,l, the electron hopping frequency, to V,,, the frequency characteristic of the solvent 

electronic polarization. The Born-Oppenheimer-based treatment is valid provided that this ratio 

is much less than unity, i.e., the time scale for the adjustment of the electronic polarization is 

much shorter than that for the transferring electron [22-261. 

The electron hopping frequency may be estimated from time-dependent perturbation 

theory. If &, is treated as a constant perturbation, the system will start to oscillate between the 

two diabatic states once the perturbation is turned on. In a bimolecular reaction, for example, the 

perturbation is turned on upon formation of the precursor complex, while in a covalently 

attached (bridged) binuclear system it can be turned on upon reduction (oxidation) of one end of 

the fully oxidized (reduced) system by an external reagent or by photoexcitation. If the system is 

in the diabatic reactant state at t = 0, then the probability of it being in the product state at some 

later time t is given by the Rabi formula [27]. 

(3.18) 

Consider first the case where the system is initially at the nuclear configuration of the 

adiabatic minimum, i.e., (G2 - Gl) = h. The system will start to oscillate between the two 
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diabatic states with a frequency equal to h/h which corresponds to - 5 x 1014 s-1 for h = 40 kcal 

molt. The maximum value of the probability of finding the system in the product state is 

4H,b2/h2 or 2 xl O-3 for H&/h = 2 x 1 O-2. There is thus only a very small probability that weak 

coupling will drive the system into the product state at a nuclear configuration near the initial 

state minimum. Since the frequency with which the system oscillates under the influence of the 

perturbation is h/h, the maximum frequency of attaining the product state (i.e., the maximum 

probablity per unit time) is 4Hab2/hh. In other words, V,l at the adiabatic minimum is estimated 

to be = 1012 s-l for a moderately coupled Class II system (&b -100 cm-l, h = 10 kcal mol-I). 

Since Vep -1015 s-1 or higher for most colorless solvents [251, the ratio v,~/v,~ is much less than 

unity for a weakly or moderately coupled Class II system near the adiabatic minmum. 

We turn next to the frequency of electron hopping in the transition state. As is evident 

from Eq. (3.18) with (G2 - GI) = 2H&, the frequency of electron hopping in the transition state 

is equal to 2Hat,/h (see also the discussion following Eq. (3.4)). Thus the transition-state hopping 

frequency V,l is I 1013 s-1 for a weakly or moderately coupled Class II system and V,l/V,, << 1 

at the transition state. Thus the condition for the validity of the Born-Oppenheimer 

approximation will be satisfied by most weakly and moderately coupled Class II systems. For 

symmetrical Class II systems the free energy of activation will then be given by the traditional 

Eq. (2.14) [22-26] except that a correction for the so-called exchange field may be needed under 

certain circumstances. The exchange field arises from the overlap charge distribution (eWaVh) and 

serves to lower hour (more correctly, to stabilize the transition state) and to reduce the effective 

&, [22y 251 However, there is no exchange field when the diabatic wave functions are 

appropriately chosen, i.e., when they are based on the exchange dipole moment Gab, see below) 

being zero [2gl and no exchange-field correction to the traditional expression for the free energy 

of activation is then required. 

In the Born-Oppenheimer limit the electrons of the surrounding medium equilibrate to the 

instantaneous position of the transferring electron while the orientations of the medium dipoles, 

which occur much more slowly, adjust to the smeared-out charge distribution of the transferring 

electron. When the time scale for electronic polarization is slower than, or comparable to, the 

time scale of the transferring electron, it becomes necessary to use a self-consistent treatment in 

which both the electronic polarization and the orientational polarization respond to the smeared- 

out charge distribution of the transferring electron 1251. Including the interaction of this charge 

distribution with the electronic polarization gives rise to a nonlinear Schrodinger equation in 

which the Hamiltonian depends on the wave function for the donor-acceptor pair. Such a 

treatment becomes increasingly important as the electronic interaction increases and introduces 

terms into the free energy of activation that have the net effect of increasing the activation 

energy beyond that given by the Born-Oppenheimer limit [ 251, In the limit that the time scale for 
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the solvent electronic polarization becomes very long the electronic polarization can no longer 

keep up with the transferring electron and the electronic polarization will contribute to the 

activation barrier in much the same way as the orientational-vibrational polarization. 

D. Optical Charge Transfer 

In addition to thermal activation, electron transfer between the donor and acceptor sites can also 

be effected by the absorption of light. As a consequence, h and Hab can be obtained from 

spectroscopic properties. 

I, Transition Energies 

The energy of the light-induced charge transfer transition in a symmetrical double-well system is 

given by Eq. (3. I 9) [29y 301. 

V max = h (3.19) 

Since h for a symmetrical localized system is independent Of Hab, Eq. (3.19) holds throughout the 

double well regime [ ’ I] . Further insight into Eq. (3.19) can be obtained by noting that Vmax is 

also given by 

V max = h’ + 4Hab2/h (3.20) 

The first term on the RHS is the scaled reorganization energy and the second term is a further 

quantum-mechanical contribution to the transition energy. Although the scaled reorganization 

energy associated with the charge transfer is reduced by the delocalization, this decrease is 

compensated for by the repulsion of the curves. The net effect is that Vmax remains constant. 

Thus, even when appreciable delocalization is present, Vma, will still exhibit the full solvent 

dependence predicted for the very weakly interacting system. 

The energy of the optical transition in a symmetrical Class III system is given by 

Vmax = 2Hab (3.21) 

so that Hab for symmetrical Class III complexes can be obtained directly from the energy of the 

optical transition [291. Note that the optical transition in a Class III system no longer involves 

charge transfer: the transition occurs between delocalized molecular orbitals of the complex and is 

not accompanied by a net dipole-moment change. 
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The energy of the charge transfer transition in an unsymmetrical double-well system is 

given by 

V 1-t 
2/&‘AG” 

rnqa 
(A + AG”)3 

(3.22) 

provided that I&b < (h + AGO)/2 L1 51. When the Z&b2 contribution may be neglected, the energy 

of the charge transfer transition in an unsymmetrical double-well system is given by the familiar 

Eq. (3.23) 

(3.23) 

Finally, although V,,, for a symmetrical double well system is independent of the degree 

of electronic interaction, the free energy of activation does depend on Hat,. Thus when AGO may 

be neglected, the ratio V,,, /AG* for a double-well system is given by 

V m=,a _ 4 -- 
Ad (1 - 21<&) 

while, when the electronic interaction may be neglected, the ratio is given by 

V mwa - 4 -- 
Ad l+Ae/d 

(3.24a) 

(3.24b) 

Evidently V,,,/AG* is 5 4 for a weakly coupled, endergonic charge-transfer reaction and 2 4 for’ 

a weakly coupled, exergonic charge-transfer reaction or for charge transfer in a moderately 

coupled symmetrical double-well system. The value of Vma~ /AG* can thus provide information 

about the degree of electronic interaction. However, in practice the latter is more readily obtained 

from the intensity of the charge transfer transition. 

2. Intensities and Dipole-Moment Changes 

Using the Mulliken formalism, Hush[ 291 showed that the electronic coupling element is 

related to the intensity of the charge transfer transition by 
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Ha,, = 2.06 x lo-’ ( V,,,,XLA%2)“~ 

Y ab 
(3.25) 

where V,,, and AVl/z are the band maximum and width in wave numbers, Tab is the distance 

separating the donor and acceptor charge centroids in &rgstriims, and the band is Gaussian 

shaped L1 ‘1. Equation (3.25) is exact within a two-state model and is applicable to both 

symmetrical and unsymmetrical Class II and Class III systems Ull. 

The Mulliken-Hush expression is a particular form of the more general equation 

ff 
ab (3.26) 

where ~12 is the transition dipole moment and (& - pus) is the difference between the dipole 

moments of the initial and final diabatic (localized) states L1 ‘7 3 11. In the generalized Mulliken- 

Hush treatment formulated by Cave and Newton [ 32, 331, the diabatic states are obtained by 

applying the transformation that diagonalizes the adiabatic dipole moment matrix. Since puab, the 

transition moment connecting the diabatic states, is zero, the value of @b - pus) is maximized. 

With this definition of the diabatic states, the diabatic dipole-moment difference is related to the 

measured dipole-moment change (JQ - ~1) by Eq. (3.27). The diabatic dipole-moment difference 

can thus be obtained from measurable quantities [321. 

&, - & = [ (& - fi )’ + 4N22]“2 (3.27) 

Equation (3.25) follows from Eq. (3.26) by noting that r,b E 1 (pb - pa)le ) and that the transition 

dipole moment is given by Eq. (3.28) 

42 = 
“6s 

1.08 x lo-‘vmax 

Jo‘s = 4.61 x 10-9(~,,,,Av,,2) 

(3.28a) 

(3.28b) 

wheref,, is the oscillator strength of the transition [ 1 1 3 3 1 I. Equation (3.2 1) is obtained by 

noting that (~2 - ~1) is zero for a delocalized system and therefore, from Eq. (3.27), (pb - pc,) = 

2,~ 12. Finally, since the adiabatic and diabatic dipole-moment changes are related by 

@2-P(1) = (Pb-,k-i)(l -2Cb2) (3.29) 
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it follows from Eq. (2.1 lc) that 

F-2-4 Gb -3 
Yb - I% = - G, -- G; 

(3.30) 

There is thus an inverse relationship between the ratio of the adiabatic and diabatic dipole- 

moment changes and the ratio of the corresponding free-energy differences within the two-state 

model. 
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IV. QUANTUM MECHANICAL TREATMENT 

Although the semiclassical expressions work well at high temperatures, they break down at low 

temperatures and/or at high reaction exergonicities. Nuclear tunneling contributions to the rate 

can become very important under such conditions. Although corrections for nuclear tunneling 

can be introduced into the semiclassical treatment, tunneling enters naturally into a quantum 

mechanical treatment. 

The quantum mechanical treatment of nonadiabatic electron transfers are normally 

considered in terms of the formalism developed for multiphonon radiationless transitions. This 

formalism starts from Fermi’s golden rule for the probability of a transition from an vibronic state 

Av of the reactant (electronic state A with vibrational level v) to a vibronic state B, of the 

product. 

(4.la) 

(4.lb) 

where pW is the weighted density of final states, E, and &:B are the unperturbed energies of the \ x 

vibronic levels and 6 is the delta function that ensures energy conservation. To obtain the 

. thermally averaged probability per unit time, k, of passing from a set of vibrational levels {A,} 

of the reactant to a set of vibrational levels {B,} of the products we assume a Boltzmann 

distribution over the vibrational levels of the reactants and sum over these levels. 

(4.2a) 

(4.2b) 

(4.2~) 

where FC is the thermally averaged Franck-Condon factor. If the reactant and product energy 

surfaces are approximated as harmonic, the FC factors can be explicitly calculated [34p 351 . 

Three broad classes of vibrational modes need to be considered: the high-frequency (fast) 

modes (hv > 1000 cm-l) which are mainly intraligand vibrations, intermediate modes (1000 cm-l 

> hv > 100 cm-l) that typically include the metal-ligand stretching vibrations and higher 

frequency solvent orientational-vibrational modes, and the low-frequency (slow) modes (hv < 

100 cm-l) which are primary solvent modes but can include low-frequency intramolecular modes. 
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At ordinary temperatures hv, >> kT - hv, >> hv, and the low-frequency modes can be treated 

using classical (continuum) expressions. 

A. Two-Mode Systems 

We first consider the case with one high-frequency mode and one low-frequency mode. 

When the high-frequency mode (vv, with reorganization energy of XI,) is in the low temperature 

limit and the low-frequency mode (v,, &) is treated classically, the rate constant for electron 

transfer is given by 

(4.3) 

where q= 
e-T!+ a -, s=-L 

J! 
and @!ib c /Ilv, 

d 
q [36-381. Since the solvent (or other low- 

frequency) mode behav&kassically while the h&h-frequency mode can tunnel it is most efficient 

for the solvent modes to use enough of the driving force to reduce the solvent barrier significantly 

with the remaining driving force absorbed by the high-frequenlcy modes. Moreover, since hv, >> 

kT all of the reaction occurs from the lowest vibrational level of the initial state, i.e., only A0 + 

{Bj} vibronic transitions are considered. The exponential term in Eq. (4.3) is a Gaussian that 

describes the rate constant reduction deriving from the solvent reorganization. The Gaussian is 

peaked at (jhv + AGO + &) = 0 and has a width of 2,/G. The transition withj* = -(AGO + 

&)/hv will normally dominate the sum. The rate constant will be maximized when the solvent 

reorganization is barrierless. This occurs when the effective driving force for the solvent 

reorganization, -(A@ +jhv,) is approximally equal to &, i.e., whenj* = -(AGO + &)/hv,. The 

effective energy gap for the high-frequency mode is -(AGO-+ &). The energy change of the 

reactant/product and the solvent for the single largest term in the sum of Eq. (4.3) is plotted vs 

driving force is illustrated in Figure 7. The solvent accepts an amount of energy that is close to 

the & for the system while the high-frequency mode will accept no energy for very low driving 

forces and the majority of the energy change when /AGO1 >> & + ilv. 

A convenient closed-form expression for the rate can be derived using Eq. (4.3). 

k,, = 
4n2f55f7. (j*/Iv,+A@+&)* 

h2V, 4il,RT 1 (4.4a) 

where 

(Ae + 3,,) 
/i&-___ 

2&R+ + 1) 
- 

hv, 
( 1 k?v, 2 

(4.4b) 
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y=ln - 1 1 p+q _, 
A, ’ 

(4.4c) 

L _I 

The rate constants in the inverted region calculated from Eq. (4.1) are almost independent of 

temperature and decrease much less rapidly with driving force than predicted by classical models 

[391. 

B. Three-Mode Systems 

Next we consider a reaction that contains an active mode in each of the regions outlined 

above. The expression for the three-mode case is 

A@ +il, ty;hv, +J;hvc 
) 
’ 

4ap 1 
(4.5) 

wherej, andj, are the changes in the vibrational quantum numbers for the high and intermediate 

frequency modes, respectively[39]. Again the last exponential term in Eq (4.5) is Gaussian 

peaked at (A@ + a$ + j,hv,, + /;hv,) = 0 with a width of 2de. In this case energy sharing 

can take place between the high-, intermediate- and low-frequency modes; the possibility of 

energy borrowing is increased but again the low-frequency mode is required to pass over its 

barrier while the other two modes can tunnel. Figures 8 and 9 show the energy distribution for 

the dominant contribution to the double sum. The low-frequency mode receives = & of energy 

to minimize its barrier; the intermediate mode receives = &, and the bulk of the energy for large 

driving forces is deposited in the high-frequency mode. Only very seldom is the low or 

intermediate-frequency energy of the product less than that of the reactant. This is shown in 

Figure 9 where A& is negative. 

These expressions show that normally most of the excess energy is acquired by the high- 

frequency mode and that the intermediate-frequency mode receives an amount of energy that is 

less than one high-frequency vibrational quantum. Only when A, >> & does the intermediate- 

frequency mode receive significantly more than a single high-frequency quantum. The effect of 

an intermediate mode on the rate constant for the reaction is relatively modest in the normal 

region but becomes important in the inverted region where the initial state needs to dispose of 

significantly more energy (Figure 10). In this region systems that have both high- and 

intermediate-frequency modes exhibit significant rate enhancements due to tunneling and the 

decrease of the rate constant with increasing driving force is attenuated. Also, due to the 
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intermediate-frequency mode the sinusoidal quantum beat effect observed for the dependence 01‘ 

the rate constant von driving force in the inverted region is significantly attenuated. 

The three-mode expression is most useful when discussing the rates of nonradiative 

deactivation of excited states in the inverted region. In this region, where -AGo >:>a., + A, + &, a 

much simpler expression can be used since the product is created with a high vibrational quantum 

number in the high-frequency mode. This expression is Eq (4.6) provided that 5& and 1 Ok., are 

each < IAGo/. 

i 

a, - (yo + I)& + as) - y&i“ - $- ( 1 A,RT+ +coth (4.6a) 

xex - 
hVVV 

\ / 

where 

y0 = In ! .I -A@ -1 -. 
A” 

(4.6b) 

The above three-mode expression very well approximates the more exact expression Eq. (4.5) but 

does not show the quantum beat effect. 

V. CONCLUSIONS 

The expressions derived from the traditional two-state model are useful in rationalizing a variety 

of electron transfer processes. Both thermal and optical charge transfer can be treated and, although not 

discussed here, electrochemical processes as well. The two-state model neglects contributions from 

higher electronic states in calculating the energies of the zero-order ground states of the reactants and 

products. Contributions from higher electronic states are, however, frequently needed in calculating 

electronic coupling elements. Mixing with such states leads to modification of the ground-state energies 

when the excited states are sufficiently low lying. Such perturbations are absent in the zero-interaction 

limit. 

Some key features of the two-state model are summarized here: 

(1) Although the reaction coordinate for charge transfer is not uniquely defined, the vertical 

difference between the zero-order reactant and product free energies is related to the degree of nuclear 

reorganization and consequently this difference provides a useful measure of the progress of the 

reaction(Section IIA). 
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(2) The degree of charge transfer is tool linearly related to the reaction coordinate defined above 

(Section IIB). 

(3) The splitting at the intersection of the adiabatic curves for a self-exchange reaction, 2Hab, enters 

into the expression for the free energy of activation for the exchange reaction analogous to the manner in 

which the driving force, -AGO, enters into the expression for the free energy of activation for a marginally 

adiabatic net reaction (Section IIB). 

(4) The vertical difference between the free energies of the reactants and products of a self exchange 

reaction remains equal to h at the equilibrium configuration of the reactants (or products) regardless of 

the magnitude of the electronic coupling as long as the system remains valence trapped (Sections IIB and 

IIIB). 

(5) The frequency of electron hopping in the transition state is equal to 2H,t,/h (Section IIIC). 

(6) The electron transfer distance is defined by the difference between the dipole moments of the 

localized (diabatic) reactant and product states (Section IIID). 

(7) At low temperatures and/or at high reaction exergonicities nuclear tunneling contributions to the 

rate and other quantum effects become important. Two- and three-mode expressions are presented that 

allow for tunneling of the higher frequency modes (Section IV). 

Overall, the two-state model is remarkably successful in interpreting electron 

properties and forms the cornerstone for interpreting a variety of complex physical, 

catalytic and biological processes. 
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Figure 1. Plot of the diabatic free-energies of the reactants (left-hand curve, G,) and 

products (right-hand curve, Gt,) vs the reaction coordinate for an electron transfer reaction 

with AC0 = 0. The sum (dots) and difference (dot-dash) of the reactant and product free- 

energies are also plotted. 

Figure 2. Plot of the diabatic free-energies of the reactant,3 (Ga) and products (Gb) vs the 

reaction coordinate for an electron transfer reaction with A@ < 0. The sum (dots) and 

difference (dot-dash) of the reactant and product free-energies are also plotted. 

Figure 3. Plot of the diabatic (Ga, Gt,) and adiabatic (Gr, G2) free-energies of the 

reactants and products vs the reaction coordinate for an electron transfer reaction with 

A@ = 0. Hat, is the electronic coupling element between the diabatic states of the 

reactants and products and h is the reorganization energy for the reaction. 

Figure 4. Plot of the adiabatic free-energy surfaces vs the reaction coordinate for an 

electron transfer reaction with A@ = 0 and HadA varying from 0 to 0.5. 

Figure 5. Plot of the differences between the adiabatic free-energy curves shown in 

Figure 4 vs the reaction coordinate for an electron transfer reaction with AGO == 0 and 

HadA varying from 0 to 0.5. 

Figure 6. Plot of cb2 vs the reaction coordinate using Eq. (2.12) with Ha& varying from 

0 to 0.5. 

Figure 7. Plot of the energy in a particular mode for an electron transfer reaction with 

two active modes. A&” and A& are the differences between the energies of the products 

and reactants in the high- and low-frequency modes, respectively; hi, (cm-‘) and hVi (cm- 

‘) are (2000,200O) and (1200, -) for the high- and low-frequency modes and the 

temperature is 300 K. The calculations were done using Eq. (4.5). The straight line, the 

stepped solid line and the dotted lines are the total energy difference (A&) and the 

differences between the energies of the products and reactants in the high- and low- 

frequency modes, respectively. 

Figure 8. Plot of the energy in a particular mode for anelectron transfer reaction with 

three active modes. A&, A& and A& are the differences between the energies of the 

products and reactantsin the high-, intermediate- and low-frequency modes, respectively; 

hi, (cm-‘) and hVi (cm-‘) are (2000,200O); (200,200); and (1000, -) for the high-, 

intermediate- and low-frequency modes and the temperature is 300 K. The calculations 

were done using Eq. (4.5). The straight line, the stepped solid line, the dashed line and 

the dotted lines are the total energy difference (A@) and the differences between the 

energies of the products and reactants in the high-, intermediate- and low-frequency 

modes, respectively. 
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Figure 9. Plot of the energy in a particular mode for an electron transfer reaction with 

three active modes. A&,, A.E~ and AE, are the difference between the energies of the 

products and reactants in the high-, intermediate- and low-frequency modes hi, (cm-‘) and 

hi (cm-‘) are (2000, 2000); (1000, 200); and (200, -) for the high-, intermediate- and 

low-frequency modes, respectively, and the temperature is 300 K. The calculations were 

done using Eq. (4.5). The straight line, the stepped solid line, the dashed line and the 

dotted lines are the total energy difference (AGO) and the differences between the energies 

of the products and reactants in the high-, intermediate- and low-frequency modes, 

respectively. 

Figure 10. Plot of the logarithm of the Franck-Condon factors for the electron transfer 

reaction calculated using the classical expression, Eq. (3.3); two-mode expression, Eq. 

(4.3); three-mode expression, Eq. (4.5); and the approximate three-mode expression, Eq. 

(4.6) vs driving force. The parameters used (IL,, h,, hv,, Ah, hvh in cm-‘) for the 

calculations are classical: (3200); two-mode, (1200,2000, 600); three-mode (600, 600, 

200,2000,600) and the temperature is 80 K. The solid line (inverted parabola), dotted 

line, oscillating solid line and the dashed line are for the classical expression, Eq. (3.3) 

the two-mode expression, Eq. (4.3) the full three-mode expression, Eq. (4.5) and the 

approximate three-mode expression, Eq. (4.6) respectively. 
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